
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

2002 Society for Design and Process Science

1

A QUANTITATIVE RISK MODEL FOR EARLY LIFECYCLE DECISION MAKING
Martin S. Feather, Steven L. Cornford, Julia Dunphy, Ken Hicks
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena CA 91109, USA
{Martin.S.Feather, Steven.L.Cornford, Julia.Dunphy, Kenneth.Hicks}@Jpl.Nasa.Gov

ABSTRACT
Decisions made in the earliest phases of system

development have most leverage to influence the success
of the entire development effort, and yet must be made
when information is incomplete and uncertain.

We have developed a scalable cost-benefit model to
support this critical phase of early-lifecycle decision-
making,. We have focused on scalability in order to
accommodate the many concerns that are relevant in
planning complex development efforts. We use risk as the
unifying concept from which both cost (sum of resources
it takes to mitigate risk) and benefit (sum of requirements
attained when risks are taken into account) are calculated.

The model is supported by custom-built software.
We have used this to elicit and combine information from
experts in the multiple disciplines. This is done in an on-
the-fly manner, thus retaining the involvement of those
experts. It has proven successful at pinpointing the most
critical areas within a large space of concerns, and at
guiding experts toward superior alternatives.

DEFECT DETECTION & PREVENTION (DDP) – A
RISK-CENTRIC MODEL OF COST & BENEFIT

At NASA we have been developing and applying
our risk management framework, “Defect Detection and
Prevention” (DDP), for several years. DDP is a process
for which we have custom-built software support. We
have published several accounts of DDP – (Cornford et
al., 2001) gives an overview, (Cornford et al., 2002) some
recent directions, (Feather et al., 2000) the “look and feel”
underpinning the software. In this paper we focus on the
model underpinning DDP.

DDP deals with three key concepts: requirements,
risks and risk mitigations (in some of the papers we have
published, risks are referred to as “failure modes”, and
mitigations as “PACTs”). Risks are quantitatively related
to requirements, to indicate how much each risk, should it
occur, impacts each requirement. Mitigations are
quantitatively related to risks, to indicate how much of a
risk-reducing effect the mitigation, should it be applied,
has on the risk. The topology of this simple but scalable
model is shown in Figure 1

In a DDP model, a set of mitigations achieves
benefits (requirements are met because the risks that
impact them are reduced by the selected mitigations), but
incurs costs (the sum total cost of performing those
mitigations). The primary purpose of DDP is to facilitate
the judicious selection of a set of mitigations, thus

attaining requirements in a cost-effective manner.
The subsections that follow present more details of

this model, and some of the ramifications of applying it to
real-world problems.
Requirements

Requirements are what the system is to achieve.
Requirements are assigned weights, representing their
relative importance. Requirements are either “on”, or
“off”. The DDP computations automatically apply to
those and only those requirements that are “on”.

There can be a wide variety of requirements.
They can be requirements imposed on the system to be
developed, and/or requirements on the development
process itself. We have seen instances of requirements on
the functionality of the artifact (e.g., that it be able to
control a spacecraft instrument), on the resources it
consumes (e.g., memory), on its tolerance of its
surrounding environment (e.g., be able to work around
hardware memory errors) and on the development process
by which it is constructed (e.g., that it be delivered on
schedule and within budget). We have even seen a
requirement stated as “no other technology is better”,
when the purpose of the exercise was to assess the
worthiness of, and approach to, maturating a novel
technology into flight readiness. It is common to see a
mixture of multiple such kinds of requirements within a
single application of DDP. Requirements can be varied
not only in area, but also in level of detail, with more
detail provided for areas of especial concern.

Requirements can be numerous – in typical DDP
applications experts have listed 30 – 100 requirements.
Simple tree structures are used to taxonomize
requirements, the advantages of which are:
• Grouping requirements into categories and

subcategories provides a reminder to users of the
range of issues they need to think about.

• Straightforward taxonomies help users locate where
they placed a requirement. Navigation becomes
challenging as the number of items grows, especially
when they surpass the number that can be squeezed
into view on a single screen.

• Allowing tree structures of requirements to be
collapsed or expanded supports abstraction. A
collapsed subtree aggregates all of its descendants, so
serves as an abstraction of the detail beneath. For
example, the weight of a non-leaf requirement is
recursively computed as the sum of the weights of its
children.

2

Requirements are candidates for trade.
Requirements are quantitatively related to the risks that
impact them, and risks are in turn quantitatively related to
the mitigations that serve to reduce those risks. Thus, the
weights ascribed to requirements are at key to computing
the relative “benefit” of a DDP model.

The existence of especially problematic
requirements (impacted by risks which cannot readily be
mitigated) quickly becomes apparent when using DDP.
This enables users to identify those requirements whose
removal would admit far less expensive solutions.
Risks

Risks are all the things that, should they occur, lead
to loss of requirements. Risks are assigned an a-priori
likelihood (the chance of the risk occurring, if nothing is
done to inhibit it). Generally, the a-priori likelihood is left
at 1 (certainty). For example, the likelihood of some
complex piece of software containing bugs (if nothing is
done to inspect or test that software) is close to certainty.
In instances where physical phenomena are involved, their
likelihoods can be reasonably asserted to be somewhat
less than certainty (e.g., the likelihood of a lightning
during launch). Like requirements, risks are either “on” or
“off”, and only those that are “on” contribute to DDP’s
calculations. By default, risks start as “on”, forcing users
to explicitly turn them “off” if they have reason to believe
that they do not apply to the system at hand.

Risk assessment is calculated, not directly
estimated. A key difference between DDP and most other
approaches to risk assessment is that DDP calculates the
magnitude of a risk by summing its impacts on
requirements; other approaches ask directly for an
estimate of the severity of the risk itself. DDP’s
disadvantage is the extra overhead in gathering the
quantitative data on which to base its calculations. DDP’s
advantage is that its computation of risk is a more
disciplined process. Furthermore, it allows for trades in
requirements space, an option that is not so readily
pursued in traditional risk assessment.

Risks are numerous. Like requirements, risks can
be numerous. In typical DDP applications, experts have
listed 30 – 200 risks. As with requirements, risks are
organized into taxonomies for the purposes of navigation,
reminders, and abstraction.

For example, in (Feather et al., 2001) we specialized
DDP to software assurance planning We pre-populated
DDP with the Software Engineering Institute’s taxonomy
of 64 software development risks (e.g., the “Product
Engineering” category contains a “Requirements Risks”
subcategory which in turn contains “Completeness:
Incomplete requirements”). From this starting point, DDP
allows users to discard risks that are irrelevant to their
task, add risks that are not already included, and refine
risks to greater levels of detail.
Mitigations

Mitigations are all the activities that could be done to

reduce the likelihood of risks and/or reduce their impact
on requirements. Each mitigation is assigned cost, the
costs of performing it. Mitigations are also assigned the
time period within the development effort at which they
would be performed (e.g., requirements, design). Like
requirements and risks, mitigations either “on” or “off”,
and only those that are “on” contribute to DDP’s
calculations of risk reduction. One of the primary
purposes of a DDP application is to choose which
mitigations should be “on”.

Mitigations are numerous. Typical DDP
applications have involved lists of 30 – 170 mitigations.

Mitigations are choices, not requirements. It is
important to realize that during the use of DDP,
mitigations are choices. At the conclusion of a DDP study,
the chosen mitigations then may become requirements on
the development to follow. In a similar vein, failure to
turn a mitigation “on” is not a risk per se.

Mitigations can have multiple costs. Performing a
mitigation can have multiple costs (e.g., schedule,
budget). In spacecraft hardware designs we have tracked
additional forms of cost (e.g., mass, power and volume).

Mitigations’ time periods. The sequence of time
periods is set for the given application. It might be
organized into calendar units (e.g., quarters of the
financial year), or into development stages (e.g.,
requirements, design). This information provides insight
into the progression of mitigation spending over the
course of the planned development. For multi-year
projects, there may be constraints on resources (e.g.,
budgets) expended by year. As discussed in (Cornford et
al., 2002), the information also provides key insight into
the “risk profile” – how risk diminishes over the course of
the planned development. Plans that reduce risks early
are, in general, preferred over plans that attain the same
final risk level but do so by reducing risks late. The reason
is that all of these plans contain considerable uncertainty
(remember, DDP is applied early in the lifecycle where
solid information is lacking). A plan that reduces risk
early can slip and still have reduced risks to tolerable
levels by the originally planned launch date (Plan A in
Figure 2). The same tolerance to slippage is not true of a
plan that reduces risk late (Plan B in Figure 2).
Impacts

For each Requirement x Risk pair, we assert how
much of that Requirement will be lost should that risk
occur. This value we call the “impact”. It is expressed as a
number in the range 0 – 1, meaning the proportion of the
requirement that would be lost. Thus 0 means no loss
whatsoever, and 1 means total loss of the requirement.

Simple combination rule for impacts: impacts
combine additively, e.g., if two different risks impact the
same requirement, then their combined impact is the sum
of their individual impacts. This may seem an overly
simplistic combination rule, but in the early stages of risk
assessment it suffices to capture the wide range of

3

problems that need to be considered. Recall that DDP is
aimed at the early stages of planning, when detailed
design information is absent. As designs mature, other
more design-centric risk assessment methods become
applicable (e.g., probabilistic risk assessment).

Impacts are numerous: A given risk may have
impacts on multiple requirements, and those impacts need
not be identical. Likewise, a given requirement may be
impacted by multiple risks, whose impacts need not be
identical. In typical DDP applications, the numbers of
impacts (i.e., Requirement x Risk pairs for which the
impact value is non-zero) range from the many hundreds
to the low thousands.

Much of the power of the DDP process stems from
its ability to handle a large number of such cross-linkings.
We eschew a complex model of combination in order to
retain this scalability, notably the scalability of eliciting
the information from the experts.

Requirements “at risk”: For each requirement,
DDP computes the sum total impact on it. This indicates
the extent to which the requirement is “at risk”. The effect
of mitigations is to decrease risk, which in turn leads to
increased requirements attainment.

One seemingly strange consequence of our
combination rule for impacts is that requirements can be
more than completely impacted (e.g., impacts of 0.8 and
0.7 add up to a total impact of 1.5)! We compute this
metric as a guide to how much risk reduction is needed to
attain a requirement. However, for assessing value, we
compute another metric in which requirements that are
more than completely impacted contribute zero.
Effects

For each Mitigation x Risk pair, we assert how much
of the risk will be reduced if that mitigation is applied.
This value we call the “effect”. It is expressed as a number
in the range 0 – 1, meaning the proportion by which the
risk would be reduced. Thus 0 means no reduction
whatsoever, and 1 means total elimination of the risk.

Simple combination rule for effects: when several
mitigations reduce the same risk, their total effect is
computed as: (1 – the product, for each mitigation M, of
(1 – M’s effect)).

Intuitively, mitigations act as “filters” in series: each
mitigation filters out its effect’s proportion of the risks
that enter it. E.g., a mitigation with effect of 0.8 on some
risk and another mitigation with effect of 0.3 on that same
risk together have effect: (1 – (1 – 0.8)*(1 – 0.3)) = (1 –
0.2*0.7) = (1 – 0.14) = 0.86 on that risk.

As was the case for impacts (Requirement x Risk
pairs), each mitigation may effect multiple risks, and each
risk may be “effected” by multiple mitigations.

Sum total risk mitigation: For each risk, DDP
computes the combined effect of all the selected
mitigations at reducing the risk. This reduced risk value is
in turn used to calculate the requirements “at risk” figure,
to reflect the positive contributions that stem from those

mitigations. To aid users in selecting mitigations, DDP
also computes two metrics for each mitigation – its “solo”
risk reducing effect (i.e., risk reduction it would
accomplish if it were the only selected mitigation), and its
“delta” risk reducing effect (i.e., the additional risk
reduction, beyond that already achieved by the other
selected mitigations, its selection would accomplish).

We have recently begun to explore automatic search
for optimal solutions (discussed later). However, to date,
DDP applications have relied upon the users to manually
select mitigations. The “solo” and “delta” metrics have
proven useful guidance in these cases.

ISSUES OF SCALE
We have indicated typical ranges of the number of

objects in a DDP model. As a deliberately daunting
demonstration of the scale problem, Figure 3 shows the
topology of a real DDP model, drawn in the style of
Figure 1, but containing the full number of objects.
The need for scale

The need for handling this many objects and links
derives from the area of application. DDP is used on
complex technologies, upon which many factors from
multiple disciplines have a bearing. The primary purpose
of DDP is to take this large number of such factors into
account, so as to emerge with an understanding of which
factors are most important. For example, determine which
of the risks are truly the most damaging, which of the
requirements are proving the most problematic to attain,
and which of the mitigations are most appropriate to select
to reduce risk (and thereby attain requirements).
Handling scale

The DDP software has several features that facilitate
working with these fairly large, albeit simplistic models.
These features have been incorporated in DDP software
from the start (Feather et al., 2000), and so have been used
in all of our DDP applications to date. Briefly, they are:

Multiple views – DDP offers multiple ways of
viewing the information. For example, a tree viewer
allows editing and viewing the tree structures of
requirements, risks or mitigations. A matrix viewer (akin
to simple spreadsheets) allows editing and viewing the
impacts and effects. A bar chart viewer allows scrutiny of
the computed values (e.g., requirements’ “at risk” levels).

Hierarchy – tree structures serve to organize
information (e.g., requirements) hierarchically. The
multiple views are kept coordinated with respect the
current status of the hierarchy, e.g., if a subtree of
requirements is currently “collapsed”, then the
corresponding rows in the matrix of impacts (between
requirements and risks) are aggregated into a single row.
The values of the aggregated row’s cells are computed
automatically by aggregating the values of the cells of
which the aggregation was composed.

Compact views – impacts form a giant Requirement
x Risk matrix, and effects form a giant Mitigation x Risk

4

matrix. These are generally rather sparse matrices (i.e., the
majority of the cells are blank, corresponding to a zero
impact or effect). We take advantage of this sparseness to
portray the matrix information in a “list” style, in which
only the non-zero impacts/effects are listed alongside each
Requirement/Risk/Mitigation. (This feature derives from
the work of JPLers D. Howard and C. Hartsough.)

Sorting – we offer the option to sort risks into
descending order (commonly referred to as a “Pareto”
chart). Our model makes the usual distinction between
likelihood and impact (a.k.a., severity), so we are able to
produce 2-dimensional charts that sort risks along both
these dimensions – Figure 4. The upper right corner is the
maximum possible risk (maximum impact and maximum
likelihood). The axes of this chart are logarithmic scale;
hence the diagonal boundaries between the three different
shades of background are lines of constant risk.

Calculations – DDP calculates a variety of metrics
from the user-provided information. For example, for each
requirement it computes the “at risk” metric as the sum of
risk impacts on that requirement. The number of impact
values (between Requirement x Risk pairs) and effect
values (between Mitigation x Risk pairs) determines the
complexity of these calculations. In practice, DDP
models are “sparse” (approximately 10% of all possible
these pairs have non-zero values). Nevertheless, a
complete recalculation running DDP on a 1 GHz
Pentium® can take two or three seconds, and some
displays of information take a noticeable time to be
updated. For key operations (adding/changing/removing
an impact or effect value, and selecting/unselecting a
mitigation) DDP is programmed to incrementally
recompute metrics. Exploiting the hierarchical structure of
the information (e.g., use the root of a subtree of
requirements as an aggregate in place of its many
descendents) is a further option, not currently used. The
extensions to the DDP model (described later) complicate
the situation. It would be very desirable to derive efficient
code from a lucid specification, in the style of the program
transformation research community.
Elicitation

The bulk of the time for a DDP application goes into
eliciting models from users. We typically decompose
DDP applications into four half-day sessions. In each of
these, we have on hand experts who represent all of the
aspects of the system being studied – mission scientists,
engineers from multiple disciplines, quality assurance
personnel, etc. The first three sessions are devoted to
populating DDP with the model information
(requirements, risks, mitigations, impacts and effects), and
the last session to decision making.

Since many of the DDP applications to date have
been studies of widely different technologies, there has
been little opportunity for reuse between these studies.
There have been efforts to pre-populate DDP with
information specific to certain disciplines, e.g., the

software assurance planning mentioned before, however
at this point we have little experience with their use. As
open question is the degree to which such pre-populated
databases save time – will users spend as much time going
through them as they would to build them from scratch?

We have found that in eliciting information from a
group of experts, we can use disagreement to drive the
need for refining the information. For example, if there is
disagreement about the impact of a risk on a requirement,
this almost always stems from those experts thinking of
different cases (e.g., the impact in the “nominal” scenario,
vs. the impact in a high-criticality scenario). Subdividing
the risk and/or the requirement into multiple subcases, and
assigning appropriately different impact values to each,
resolves these disagreements. Similarly, agreement
indicates the lack of need to subdivide into greater depth.
We do not always recognize the latter in advance,
resulting in subcases that we find are being assigned the
same values. When this occurs, we simply delete the
myriad of subcases, and make do with the parent.
Decision Making

The primary purpose of DDP applications is to result
in the selection of a set of mitigations that reduce risk (and
thereby lead to attainment of requirements) in a cost-
effective manner. On some occasions DDP applications
have led to the discovery of problematic requirements –
ones whose attainment is proving particularly expensive
to achieve.

We have also used DDP to compare alternatives.
DDP allows for the turning on and off of individual
elements (requirements, risks and mitigations), of subtrees
of them, and indeed of arbitrary sets of them.

In applications to date, we have relied on the human
experts to make the decisions of which mitigations to
select (and/or of which requirements to discard). This is
clearly a challenging task, given the interconnectedness of
DDP’s elements. In response, we have begun
investigating techniques that automate search for (near)
optimal solutions. In one approach, we adapted genetic
algorithms to this purpose. The preliminary results are
quite promising, and we intend to pursue this further. In
another approach, we collaborated with Tim Menzies,
who has a machine-learning based approach (Menzies and
Hu, 2001) to identifying critical decisions to make (and
which way to make them!). Again, the preliminary results
are quite promising. A snapshot of a recently completed
pilot study (Feather and Menzies, 2002) is shown in
Figure 5. This shows a chart whose two dimensions are
cost (the sum total cost of selected mitigations) and
benefit (the sum total value of attained requirements,
taking into account the beneficial risk-reducing effect of
the selected mitigations). Each point represents a selection
of mitigations. Some selections are very wasteful – they
cost a lot, yet attain little benefit. These are the points
towards the bottom right corner of the diagram.
Conversely, some selections are very effective – they

5

attain near-maximal benefit, at significant cost savings as
compared to many of the solutions. These are the points
towards the upper left corner. The black points are those
generated by random selection of mitigations, so their
distribution illustrates the wide range of possibilities. The
white region consists of a large number of individual
white points, each of which is a solution recommended by
Menzies’ machine learning based technique.

VALIDITY OF THE MODEL
The validity of a DDP model is often called into

question, given that it is based on a large number of
estimated values combined in a simplistic manner. We
respond to this concern in three ways: reflection on the
intended purposes of the model, mechanisms to explore
the sensitivity of the model to its data, and population of
the model with data based on past experience:
Purpose of a DDP model

DDP is best applied early in the lifecycle of a
development. Its purpose is to guide developers to focus
on the issues that are of most importance. Thus, the model
need only have sufficient fidelity to be able to distinguish
between alternatives, and need not (indeed, we argue
should not) be used to compute absolute measures (e.g.,
probability of success).

Anecdotal evidence culled from DDP applications is
supportive of the value of DDP. Initially skeptical
participants typically emerge convinced that DDP has
helped. (Cornford et al., 2001 reports benefits of:
• Clarification of a customer requirement leading to

considerable savings in work not required.
• Rejuvenation of a technology by identification of

opportunities for its utilization.
• Support for adoption of a commercial software

development environment (balancing the pros and
cons of making this switch from current practice)

Explorations of the sensitivity of a DDP model
We recently added a capability to study the

sensitivity of the model to variations in the model’s effect
numbers (the quantitative estimates of how effective each
mitigation is at reducing each risk).

This capability offers a menu of ways of making
changes to effect values. For the user’s selection, the tool
then applies the change one-by-one to each of the non-
zero effect values, recomputes benefit (i.e., requirements
attainment), and builds a table listing in descending order
variations of that benefit figure with respect to each effect
value. Figure 6 shows the top portion of this table for an
actual DDP model. This shows that the mitigation
“Select/make laser” (in the “PACT” column) on the risk
“Insufficient power” (in the “Failure Mode” column) has
the greatest change on requirements attainment.
Information such as this allows users to know which of
the hundreds of such values to scrutinize most closely.

In another approach to compute sensitivities, we
applied Menzies’ machine learning (discussed earlier) to

search for the impact and effect values most critical to
changing the computed costs and benefits of an optimized
solution. Application to an actual DDP dataset suggested
that the solution was relatively robust.
Population with experience-based data

The ideal answer would be to populate the model
with data based on experience, and use combination rules
that yield answers in agreement with experience. In the
software realm, we look to groups such as CeBASE
consortium http://www.cebase.org to gather such data.

When DDP is applied to plan the development of
novel technologies, data may be available for some
aspects of the development, but lacking for the more
novel factors. In such cases, we must continue to rely on
at least some of the data being experts’ best estimates.

EXTENSIONS OF THE MODEL
In this section we describe some extensions to the

core DDP model. Most of these have been incorporated
within the DDP software, but we have not yet had chance
to employ them in full-scale DDP applications. Generally,
these are conservative extensions of the standard DDP
model. They take effect if and only if optional additional
information is provided when building a DDP model.

The most significant of these concerns the
partitioning of mitigations into three categories:
“preventions”, “detections” and “alleviations”, and the
ramifications of making this distinction. We have also
allowed for the possibility that mitigations may increase
certain risks. These extensions are described next.
Categories of mitigations, and repair costs
• Preventions – mitigations that reduce the likelihood

of risks occurring, e.g., training of programmers
reduces the number of mistakes they make.

• Detections – mitigations that detect risks, with the
assumption that detected risks will be repaired, e.g.,
unit testing detects coding errors internal to the unit,
which are then corrected. The net effect of detection
and repair is a reduction in the likelihood of risks
present prior to detection remaining afterwards.

• Alleviations – mitigations that decrease the impact
(severity) of risks should they occur, e.g.,
programming a module to be tolerant of out-of-bound
values input to it from another module.

These extensions give rise to differences from the
“standard” DDP model’s calculation of risks and costs:
• Risks: Alleviations reduce impact of risks, while

preventions and detections reduce likelihood of risks.
These effects can be viewed via the risk region chart
shown in Figure 4. Users may find it more palatable
to accept high likelihood but low impact risks than
low likelihood but high impact risks. Calculation of
risk as the product of impact and likelihood would be
unable to differentiate between the two. It is common
to make this distinction in traditional reasoning about
risk. The difference here is that we have incorporated

6

the distinction into our existing framework, thus
retaining its advantages of scalability and
applicability to early-lifecycle planning.

• Costs: Mitigations in all three categories continue to
have costs associated with them. However, detections
also incur a cost of repair of the risks they detect.
This repair cost is the product of the quantity of risk
detected (computed as the reduction in likelihood
attributed to the detection) and the basic repair cost
associated with the risk itself (an additional attribute
of risks). We allow for the repair cost associated with
a risk to depend upon the time period in which the
repair is performed. Recall that mitigations are
associated with the time period in which they are
performed. Hence, a repair triggered by a detection
occurs in the time period of the mitigation.

Using this capability, we can represent the escalation of
costs of repair as time progresses. For example, the cost of
repairing a requirements flaw may be tiny at requirements
time, larger at design time, larger still at coding time, etc.
Once this information is provided, the DDP calculations
of cost then reflect the escalation of repair costs when
risks are allowed to linger to later stages of development.

It is well understood that early-lifecycle activities
such as inspections can increase benefit (requirements
attainment through reduction of risk) and decrease cost
(fewer risks to be corrected at later phases in the lifecycle,
when repair costs have escalated), e.g., (Kaner, 1996). In
(Feather et al., 2001 we use the extended DDP model to
recreate quantitatively such reasoning.
Risks induced by mitigations

Mitigations generally reduce risks, but some can also
increase certain risks. For example, a vibration test of
hardware used to detect flaws can potentially damage that
hardware further. In the software world, additional code
whose purpose is to make a design more fault tolerant
(e.g., a software voting algorithm) can introduce risk if it
is itself incorrectly implemented. Finally, repairs can
introduce risks, e.g., bug fixes may introduce new bugs.

We incorporate these phenomena within the DDP
model by allowing for a mitigation to increase risks in
addition to decreasing other risks (presumably it decreases
some risks, otherwise it would be pointless to apply it!).
Ongoing and future extensions

We are in the process of incorporating various
further extensions to the DDP model.
• Logical structure to risks, for example, and/or nodes

of fault trees in probabilistic risk assessment.
• More sophisticated means to calculate requirements

attainment than simply the sum of child requirements’
attainment (e.g., maximum, root-mean-square).

• Expression and use of additional relationships among
DDP elements. For example, the concept of one
mitigation being a “necessary precursor” to another.

In the absence of these capabilities in the current version
of DDP, we rely on manual workarounds. For example,

when we know that the combination of two mitigations
M1 and M2 does not match that predicted by our
formulae, we manually add a third mitigation, M1&M2.
We assign to this the combined effectiveness and cost
values that we believe hold for the combination of the
two. When selecting mitigations, we are careful to select
at most one of { M1, M2, M1&M2 }. Such workarounds
allow us to proceed with DDP applications, at the expense
of a small amount of additional effort.

We use actual DDP applications to gauge which
manual workarounds are recurring and tiresome, thus
motivating our choice of which extensions to work on
next. We also try to be proactive in predicting new
features (for which simple workarounds do not exist) of
benefit for future applications. An example of this is the
need to support simultaneous contributions to a shared
DDP model. At present, we serialize DDP sessions to
input information to the one and only model. This results
in either a waste of the cumulative time of the experts
present, and/or a failure to capture all the valuable
information that emerges during the session.

RELATED WORK AND CONCLUSIONS
The DDP model has some similarity with a number

of other models of systems. We briefly discuss several:
Estimation models

COCOMO and COQUALMO models predict factors
such as cost and quality based on inputs that characterize
the development at hand (Boehm et al., 2000).

Generally, estimation models such as these are
“closed” – they are not intended to be extended with new
factors (although they do encourage tuning the models to
a given organization). In contrast, the DDP model is
“open”, relying on expert users to input and link the
factors that are relevant to the development at hand.
(Kurtz and Feather, 2000) describes our work to mix of
these approaches, linking DDP to NASA’s Ask Pete tool.
The latter does estimation and planning of software
assurance activities. In combination, the Ask Pete tool is
used to build a first-cut model, and the DDP tool can then
be used to tailor this to the development at hand
Goal models

The software engineering research community has
shown increasing interest in models of “goals” (roughly
speaking, precursors to requirements). See the mini-
tutorial (van Lamsweerde, 2001) for an overview of this
area. We discuss two of these kinds of models:

The KAOS framework for goals, requirements, etc.
(Bertrand et al., 1998) is used to build a logical structure
of how system-wide requirements decompose to,
ultimately, requirements on the individual components in
a system. Models built in this framework seem well suited
to exploring the functional behavior, and to some extent,
non-functional aspects. DDP models are weaker in that
they lack the logical structure of KAOS models, but
conversely have emphasized more the quantitative aspects

7

that predominate in imperfect solutions.
The i* framework (Chung et al., 1999), (Mylopoulos

et al., 2001) combines logical structures with qualitative
models. Their framework’s combination rules support
tradeoff analysis between a few major design alternatives.
DDP models seem more appropriate when there are a
large number of small alternatives.
Bayesian Nets / Influence diagrams

Influence diagrams (a form of Bayesian nets) offer a
general framework in which factors can be combined to
assess designs and study alternatives. (Burgess et al.,
2001) uses them to compute the utility of requirements
that are candidates for inclusion in the next release of a
piece of software. In principle it would seem that a DDP
model could be represented as an influence diagram, with
a relatively “flat” topology (Figure 1). However, as seen
in Figure 3, typical DDP applications give rise to rather
voluminous such models. DDP is better tuned for decision
making when a multitude of factors must be considered.
Requirements Prioritization

Requirements prioritization has also emerged as a
topic of interest.

(Karlsson and Ryan, 1997) developed a “cost-value”
approach to prioritizing requirements. They use a cost-
value diagram to plot each requirement’s relative value
and implementation cost, facilitating the selection of an
appropriate subset of requirements.

WinWin (Boehm et al., 1994) and its custom tool (In
et al., 2001) supports multiple stakeholders to identify
conflicts between their respective evaluations of
requirements, and locate feasible solutions that are
mutually satisfactory combinations of requirements.

These examples typify approaches in which users are
asked to directly estimate the costs and benefits of
individual requirements. Significant interactions among
requirements (e.g., if two requirements can be achieved by
sharing the same solutions to sub-problems) complicate
this. DDP’s approach is to explicitly relate requirements
to risks, and risks to mitigations.

Risk estimation approaches (e.g., fault tree analysis,
bayesian methods) appear well suited to the assessment of
a single design. However, our application is the planning
of mitigations, were the driving concern is the cost-
benefit-guided selection from among a large set of them.
Conclusions

We have outlined the DDP model, designed to fill
the early-life cycle niche in risk-based estimation and
planning. DDP thus complements a number of other
modeling techniques.

DDP’s key elements are requirements, risks and
mitigations, are linked to one another in a quantitative
manner. Custom tool support facilitates use of this model
when relatively large numbers of items are involved.

DDP has been successfully applied in early lifecycle
decision-making. It appears well suited to applications
where a multitude of factors must be considered

simultaneously. We fully expect use of DDP to continue.
We also anticipate that recent extensions to the DDP
model will further its ability to compute costs and benefits
associated with risk mitigations.

ACKNOWLEDGMENTS
The research described in this paper was carried out

at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration. Reference herein
to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does
not constitute or imply its endorsement by the United
States Government or the Jet Propulsion Laboratory,
California Institute of Technology. Contributions from,
and discussions with, Burton Sigal (JPL), Patrick
Hutchinson (Wofford College, Spartanburg SC), Peter
Hoh In (Texas A&M), John Kelly (JPL), Tim Kurtz
(NASA Glenn), James Kiper (Miami Univ., Ohio) and
Tim Menzies (U. British Columbia) have been most
useful in helping us formulate our ideas.

REFERENCES
Bertrand, P., Darimont, R., Delor, E., Massonet, P.,

and van Lamsweerde, A., 1998, “GRAIL/KAOS: an
environment for goal driven requirements engineering”,
30th Int. Conference on Software Engineering.

Boehm, B., et al., "Software Cost Estimation with
COCOMO II” Prentice Hall.

Boehm, B., Bose, P., Horowitz, E., and Lee, M.,
1994, “Software Requirements as Negotiated Win
Conditions”, Proceedings 1st International Conference on
Requirements Engineering, pp. 74-83.

Burgess, C.J., Dattani, I., Hughes, G., May, J.H.R.,
and Rees, K., 2001, “Using Influence Diagrams to Aid the
Management of Software Change”, Requirements
Engineering 6(3), pp. 173-182.

Chung, L., Nixon, B.A., Yu, E., and Mylopoulos, J.,
1999, “Non-Functional Requirements in Software
Engineering” Kluwer Academic Publishers.

Cornford, S.L., Feather, M.S., and Hicks, K.A.,
2001, “DDP – A tool for life-cycle risk management”,
IEEE Aerospace Conference, pp. 441-451.

Cornford, S.L., Dunphy, J., and Feather, M.S., 2002,
“Optimizing the Design of end-to-end Spacecraft Systems
using risk as a currency”, IEEE Aerospace Conference.

Feather, M.S., Cornford, S.L., and Gibbel, M., 2000,
“Scalable Mechanisms for Requirements Interaction
Management”, IEEE Int. Conference on Requirements
Engineering, pp. 119-129.

Feather, M.S., Sigal, B., Cornford, S.L., and
Hutchinson, P., 2001, “Incorporating Cost-Benefit
Analyses into Software Assurance Planning”, to appear in
Proceedings, 26th IEEE/NASA Software Engineering
Workshop, Greenbelt, Maryland November 27-29.

Feather, M.S., and Menzies, T., 2002, “Converging

8

on the Optimal Attainment of Requirements”, in
submission.

In, H., Boehm, B., Rodgers, T., and Deutsch, M.,
2001, “Applying WinWin to Quality Requirements: A
Case Study”, Proceedings 23rd International Conference
on Software Engineering, pp. 555-564.

Kaner, C., 1996, “Quality Cost Analysis: Benefits
and Risks”, Software QA Vol 3, #1, pp. 23.

Karlsson, J., and Ryan, K., 1997, A Cost-Value
Approach for Prioritizing Requirements. IEEE Software,
Sept./Oct. pp. 67-74.

Kurtz, T., and Feather, M.S., 2000, “Putting it All
Together: Software Planning, Estimating and Assessment
for a Successful Project”, Proceedings 4th International
Software & Internet Quality Week Conference, Belgium.

Menzies, T., and Hu, Y., 2001, “Constraining
Discussions in Requirements Engineering via Models”,
1st International Workshop on Model Based
Requirements Engineering, San Diego, California.

Mylopoulos, J., Chung, L., Liao, S., Wang, H., and
Yu, E., 2001, “Exploring Alternatives during
Requirements Analysis”, IEEE Software 18(1), pp. 92-96.

van Lamsweerde, A., 2001, “Goal-Oriented
Requirements Engineering: A Guided Tour”, Proceedings
5th IEEE International Symposium on Requirements
Engineering, Toronto, Canada, August, pp. 249-263.

FIGURES

ΣΣΣΣ = attainment of requirements

R1 R2 Rn

F1

...Requirements

F2 Fz

Mitigations

Risks ...
I11Impacts

M1 M2 Mk
...

ΣΣΣΣ = cost of mitigations

Effects E11 E12

In2

Ek2
E2z

I21

ΣΣΣΣ = attainment of requirements

R1R1 R2R2 RnRn

F1F1

...Requirements

F2F2 FzFz

Mitigations

Risks ...
I11Impacts

M1M1 M2M2 MkMk
...

ΣΣΣΣ = cost of mitigations

Effects E11 E12

In2

Ek2
E2z

I21

Fig. 1 Topology of DDP's risk-centric cost-benefit model

development time

ri
sk

Launch date

Plan A

Plan B

Plan A,
slipped

Risk at launch low

Plan B, slipped
Risk at launch high

development time

ri
sk

Launch date

Plan A

Plan BPlan B

Plan A,
slipped

Risk at launch low

Plan A,
slipped

Risk at launch low

Plan A,
slipped

Risk at launch low

Plan B, slipped
Risk at launch high

Plan B, slipped
Risk at launch high

Plan B, slipped
Risk at launch high

Fig. 2 Risk profiles, over time

Fig. 3 Topology of an actual DDP model

Fig. 4 Risk region chart
Fig. 5. Converging on optimal attainment of requirements

Fig. 6 Sensitivity analysis results table

